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We have found exact, periodic, time-dependent solitary wave solutions of a discrete �4 field theory model.
For finite lattices, depending on whether one is considering a repulsive or attractive case, the solutions are
Jacobi elliptic functions, either sn�x ,m� �which reduce to the kink function tanh�x� for m→1�, or they are
dn�x ,m� and cn�x ,m� �which reduce to the pulse function sech�x� for m→1�. We have studied the stability of
these solutions numerically, and we find that our solutions are linearly stable in most cases. We show that this
model is a Hamiltonian system, and that the effective Peierls-Nabarro barrier due to discreteness is zero not
only for the two localized modes but even for all three periodic solutions. We also present results of numerical
simulations of scattering of kink-antikink and pulse-antipulse solitary wave solutions.
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I. INTRODUCTION

Discrete nonlinear equations are ubiquitous and play an
important role in diverse physical contexts �1,2�. Some ex-
amples of integrable discrete equations include the Ablowitz-
Ladik �AL� lattice �3� and the Toda lattice �4�. Certain non-
Abelian discrete integrable models are also known �5�. There
are many nonintegrable discrete nonlinear equations such as
the discrete sine-Gordon �DSG� �6,7�, the discrete nonlinear
Schrödinger �DNLS� equation �8�, and the Fermi-Pasta-Ulam
�FPU� problem �9�. DSG is a physical realization of the dy-
namics of dislocations in crystals where it is known as the
Frenkel-Kontorova model �10�. It also arises in the context
of ferromagnets with planar anisotropy �11�, adsorption on a
crystal lattice, and pinned charge-density waves �12�. Simi-
larly, DNLS plays a role in the propagation of electromag-
netic waves in doped glass fibers �13� and other optical
waveguides �14�, and it describes Bose-Einstein condensates
in optical lattices �15�. FPU has served as a fertile paradigm
for understanding solitons, discrete breathers, intrinsic local-
ized modes, chaos, anomalous transport in low-dimensional
systems, and the fundamentals of statistical mechanics �9�. A
discrete double well or discrete �4 equation is a model for
structural phase transitions �16�, and may be relevant for a
better understanding of the collisions of relativistic kinks
�17�.

Obtaining exact �solitonlike� solutions is always desir-
able, particularly for discrete systems where the notion of a
discreteness �or Peierls-Nabarro� barrier �18,19� is an impor-
tant one related to the pinning of dislocations �10�. In addi-
tion, exact solutions allow one to calculate certain important
physical quantities analytically as well as serving as diagnos-
tics for simulations. Discrete models generally break transla-
tional invariance leading to a barrier for dislocation motion
which occurs in the discrete sine-Gordon �20� or Frenkel-
Kontorova �21,22� models. However, starting with a gener-
alization of the nonlinear Schrödinger equation, it is possible
to obtain static solutions of an AL-type discretization of the
�4 model without a Peierls-Nabarro barrier �23�. Recently

derived summation identities �24� involving Jacobi elliptic
functions �25,26� led to exact periodic solutions of a modi-
fied DNLS equation �27�. In this paper, we exploit similar
identities to obtain exact time-dependent periodic solutions
of the discrete �4 model.

The paper is organized as follows. In the next section, we
summarize the exact solitary wave solutions of the con-
tinuum �4 model. In Sec. III by identifying the relevant el-
liptic function identities, we derive a discrete �4 model
which allows for exact static solutions. We then obtain these
solutions and study their stability. In Sec. IV, we explicitly
write down the corresponding Hamiltonian dynamics using a
modified Poisson bracket algebra and obtain moving kink
and pulse solutions. Section V contains numerical results for
the scattering of both kink- and pulselike solitary waves.
Kink-antikink collisions appear to create a breather with
some radiation, and pulse-antipulse collisions lead to a flip
and little radiation. In Sec. VI we compute the energy of the
solitary waves, and show that the Peierls-Nabarro barrier
�18,19� due to discreteness is zero not only for the two lo-
calized solutions but even for the three periodic solutions.
Finally, we summarize our main findings in Sec. VII.

II. CONTINUUM SOLITARY WAVES

The double-well potential with the coupling parameter �
and the two minima at �= ±a,

V =
�

4
��2 − a2�2, �2.1�

leads to the following relativistic field equation:

−
�2�

�t2 +
�2�

�x2 − ����2 − a2� = 0. �2.2�

For ��0, if one assumes a moving periodic solution with
velocity v in terms of the Jacobi elliptic function sn�x,m�
with modulus m,
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��x,t� = Aa sn���x + x0 − vt�,m� , �2.3�

one finds that

� = � �a2

�1 − v2��1 + m��1/2

,

A =� 2m

1 + m
. �2.4�

The usual kink solitary wave is obtained in the limit m→1,
as

��x,t� = a tanh�� �a2

2�1 − v2��1/2

�x + x0 − vt�	 . �2.5�

If instead ��0, then there are dn Jacobi elliptic function
solutions to the field equations. Assuming

��x,t� = Aa dn���x + x0 − vt�,m� , �2.6�

we find a moving periodic pulse solution with

� = � − �a2

�1 − v2��2 − m��1/2

,

A =� 2

2 − m
. �2.7�

In fact, there is another pulse solution in terms of the
Jacobi elliptic function of cn type. Assuming

��x,t� = Aa cn���x + x0 − vt�,m� , �2.8�

we obtain a moving periodic solution with

� = � − �a2

�1 − v2��2m − 1��1/2

,

A =� 2m

2m − 1
. �2.9�

Note that this solution is valid only if m�1/2.
The usual pulse solitary wave is obtained in the limit

m→1, as

��x,t� = a�2 sech�
 − �a2

1 − v2�1/2

�x + x0 − vt�� . �2.10�

Note that similar solutions and their stability were consid-
ered by Aubry in the context of structural phase transitions
�28�. In the rest of this paper, we will refer to the sn solutions
as kinklike, and to the dn and cn solutions as pulselike.

III. DISCRETIZATION OF ��4 FIELD THEORY

A naive discretization of the field equation above is

− �̈n +
1

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2� = 0,

�3.1�

where � is the lattice parameter and the overdots represent
time derivatives. However, this equation does not admit so-
lutions of the form

�n�t� = Aa sn„���n + c�� − vt�,m… , �3.2�

where c is an arbitrary constant. To find solutions, one has to
modify the naive discretization. The key for understanding
how to modify the equation comes from the following iden-
tities �24� of the Jacobi elliptic functions.

�i� sn:

m sn�x,m�2�sn�x + �,m� + sn�x − �,m��

= ns2��,m��sn�x + �,m� + sn�x − �,m��

− 2cs��,m�ds��,m�sn�x,m� . �3.3�

�ii� cn:

m cn�x,m�2�cn�x + �,m� + cn�x − �,m��

= − ds2��,m��cn�x + �,m� + cn�x − �,m��

+ 2cs��,m�ns��,m�cn�x,m� . �3.4�

�iii� dn:

dn�x,m�2�dn�x + �,m� + dn�x − �,m��

= − cs2��,m��dn�x + �,m� + dn�x − �,m��

+ 2ds��,m�ns��,m�dn�x,m� , �3.5�

where

ns�x,m� =
1

sn�x,m�
, cs�x,m� =

cn�x,m�
sn�x,m�

, �3.6�

ds�x,m� =
dn�x,m�
sn�x,m�

.

For the sake of brevity, in what follows we will suppress the
modulus m in the argument of the Jacobi elliptic functions,
except when needed for added clarity.

A. Static lattice solutions

Consider the static lattice equation �3.1�,

1

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2� = 0. �3.7�

Here �n������n+c� ,m�. A general ansatz to obtain the so-
lution is to multiply the second difference operator by the
factor �1−��n

2�, with � chosen so that we get a consistent set
of equations. That is, we consider instead the equation

1 − ��n
2

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2� = 0. �3.8�

Using � to eliminate the �n
3 term leads to the result

� = ��2/2. �3.9�

This implies, in the static case, that the lattice equation is just
a smeared discretization of the �n

3 term. Namely, one merely
needs to study the lattice equation,
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1

�2 ��n+1 + �n−1 − 2�n� =
��n

2

2
��n+1 + �n−1� − ��na2.

�3.10�

Assume a solution of the form �for ��0�

�n = Aa snn, �3.11�

where snn denotes sn����n+c� ,m� with c being an arbitrary
constant. Note that we only need to consider c between 0 and
1
2 �half the lattice spacing�. On using the identity �3.3�, and
matching the coefficients of snn and snn+1+snn−1, we obtain

A2a2 =
2m sn2����

��2 �3.12�

and

�a2 =
2

�2 �1 − dn����cn����� . �3.13�

For ��→0� we obtain our continuum result �2.4�. Also as
m→1 we recover the usual kink solution

�n = a tanh����n + c�� . �3.14�

If instead, we have ��0 and we assume

�n = Aa dnn, �3.15�

we obtain

A2a2 = −
2

��2

sn2����
cn2����

�3.16�

and

�a2 =
2

�2�1 −
dn����
cn2����� . �3.17�

In the limit when the lattice spacing � goes to zero, we re-
cover the continuum result �2.7�.

For ��0, we also have a possible solution of the form

�n = Aa cnn. �3.18�

We obtain

A2a2 = −
2m

��2

sn2����
dn2����

�3.19�

and

�a2 =
2

�2�1 −
cn����
dn2����� . �3.20�

Again taking the lattice spacing to zero, we obtain the con-
tinuum case �2.9�. Note that as before, this solution is only
valid if m�

1
2 . For both these solutions, as m→1, we get the

pulse solution

�n = A a sech����n + c�� . �3.21�

where A=�2 cosh��� /2�.

B. Stability of solutions

Let us now discuss the stability of these static solutions.
To that purpose, let us expand

�n = �n
�s� + 	n exp�− i
t� ,

where �n
�s� is the known solitary wave exact solution and 	n

is a small perturbation. Then we find that to the lowest order
in 	n the stability equation is


2	n +
1

�2 �	n+1 + 	n−1 − 2	n� − �	n�n
�s���n+1

�s� + �n−1
�s� �

+ �	na2 −
��n

2

2
�	n+1 + 	n−1� = 0. �3.22�

Using the identities �3.3�–�3.5�, the combination
��n+1

�s� +�n−1
�s� � can be written as a function of �n alone. Thus

schematically we have

�
2 − fn�	n + gn�	n+1 + 	n−1� = 0 �3.23�

or

	n+1 + 	n−1 + hn	n = 0, �3.24�

with

hn =

2 − fn

gn
, �3.25�

where fn and gn are well defined functions. We also have that
the solutions are periodic on the lattice with N sites
�	n+N=	n�. If we write the system of N equations in matrix
form as

A�	� = 
2�	� , �3.26�

then the condition for nontrivial solutions is that

detA − 
21 = 0. �3.27�

In our simulations, we require that the solution has ex-
actly one period in the model space. Therefore, the equations
for � and A are supplemented by the equations

N�� = 4K�m� �3.28�

for solutions �n=sn��n�� or �n=cn��n��, and

N�� = 2K�m� �3.29�

when �n=dn��n��. Here K�m� is the complete elliptic inte-
gral of the first kind �25,26�. Hence, once the parameters m,
�, and a are specified, we need to solve a system of equa-
tions for �, �, and A, i.e., we have to solve Eqs. �3.12�,
�3.13�, and �3.28� or Eqs. �3.16�, �3.17�, and �3.29�, or Eqs.
�3.19�, �3.20�, and �3.28�, for the solutions sn, dn, and cn,
respectively, for �, �, and A as a function of N.

Typical results are depicted in Figs. 1 and 2 for kinklike
sn solutions and in Figs. 3 and 4, for pulselike dn solutions,
respectively. Similar results can also be obtained in the case
of the cn-type pulse solution. Given the requirement of peri-
odic boundary conditions, the functional form of the kinklike
and pulselike solutions, respectively, gives rise to a minimum
number of grid points necessary to render the discretization
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mathematically consistent. Therefore, for the case of the
kinklike solutions we find from Fig. 1 that stability requires
N�7 lattice sites, while for pulselike solutions we have
N�2. In the pulselike case, we find stability for arbitrary
values of N. The magnitude of the lowest eigenvalues in-
creases with N in the kinklike case, while it decreases with N
for pulselike solutions. For fixed m, �, and A, the lattice
spacing, �, is not an independent quantity, but it is a well-
defined function of N. As seen from Figs. 2 and 4, the lattice
spacing, �, is always a decreasing function of N.

IV. HAMILTONIAN DYNAMICS

In this section, we demonstrate that our discrete model is
a Hamiltonian system. The equation which the static solu-
tions obey, Eq. �3.8�, can be written as

1

�2 ��n+1 + �n−1 − 2�n� + �
�n�a2 − �n

2�
1 − ��n

2 = 0. �4.1�

We recognize that this equation can be derived from the po-
tential function

V0��n� = �
n

��n+1 − �n�2

2�2 + ��
n
� d�n

�n�a2 − �n
2�

1 − ��n
2 .

�4.2�

Performing the integral, we obtain explicitly

V0��n� = �
n

��n+1 − �n�2

2�2 − �
�n

2

2�
+ ��a2� − 1�

ln�1 − ��n
2�

2�2 .

�4.3�

One easily verifies that

− �1 − ��n
2�

�V0

��n
=

1 − ��n
2

�2 ��n+1 + �n−1 − 2�n�

+ ��n�a2 − �n
2� . �4.4�

The continuum limit �→0 �or �→0� of the last two terms in
Eq. �4.3� is given by

�

4
��n

2 − a2�2 −
�

4
a4. �4.5�

We will now show that if we want our class of solutions
to be the static limit of a Hamiltonian dynamical system, we

FIG. 2. �Color online� Kinklike ���0� sn case: N dependence
of the lattice spacing, �, for �=1, a=1, and various values of m.

FIG. 3. �Color online� Pulselike ���0� dn case: N dependence
of the lowest eigenvalue, 
1

2, for �=−1, a=1.5, and various values
of m.

FIG. 4. �Color online� Pulselike ���0� dn case: N dependence
of the lattice spacing, �, for �=−1, a=1.5, and various values of m.

FIG. 1. �Color online� Kinklike ���0� sn case: N dependence
of the lowest eigenvalue, 
1

2, for �=1, a=1, and various values of
the elliptic modulus m.

COOPER et al. PHYSICAL REVIEW E 72, 036605 �2005�

036605-4



will be able to have single solitary waves obey a simple
equation, but general solutions will obey a more complicated
dynamics with terms proportional to �̇2. For simplicity, we
will assume that the Hamiltonian takes the form

H = �
n

�n

2

2
g��n� + V��n�� , �4.6�

with V given by V0 in Eq. �4.3� plus possibly some additional
terms that vanish in the continuum limit. Here �n is the
conjugate momentum and g��n� a weight function. For gen-
erality we will assume, as in the case of the discrete DNLS
equation �23�, that an extended Poisson bracket structure ex-
ists �29,30�, namely

��m,�n� = �nmf��n� �4.7�

and

�̇n = ��n,H� =
�H

��m
��n,�m� = f��n�

�H

��n
,

�̇n = ��n,H� =
�H

��m
��n,�m� = − f��n�

�H

��n
. �4.8�

From our ansatz, Eq. �4.6�, we obtain the first-order equa-
tions

�̇n = �nf��n�g��n� � �nh��n� �4.9�

and

�̇n = − f��n�
�n
2

2

�g

��n
+

�V

��n
� . �4.10�

This leads to the following second-order differential equation
for �n:

�̈n = − f��n�h��n�
�V

��n
+ �̇2
1

h

�h

��n
−

f

2h

�g

��n
� .

�4.11�

For this equation to have the previously found static solitary
waves, as well as the correct continuum limit, we need only
that

f��n�h��n� = f2��n�g��n� = 1 − ��n
2. �4.12�

Three convenient choices which lead to the same second-
order equation of motion for �n are �a� f =1 �ordinary Pois-
son brackets�, �b� h=1 �extended Poisson brackets�, and �c�
g=1 �extended Poisson brackets and conventional kinetic en-
ergy�. First consider the case f =1. This requires

h��n� = g��n� = 1 − ��n
2. �4.13�

For the case h=1, this leads to

f = 1 − ��n
2, g = �1 − ��n

2�−1. �4.14�

For the case g=1, we obtain

f = h = �1 − ��n
2. �4.15�

From all choices satisfying Eq. �4.12� we get, if we choose
V=V0 with V0 given by Eq. �4.3�, the equation of motion

�̈n =
1 − ��n

2

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2� −

��̇n
2�n

1 − ��n
2 .

�4.16�

For �=��2 /2 this equation has the previously found static
lattice solitary wave solutions as well as the correct con-
tinuum limit. The third choice �g=1� has the property that
the kinetic term in the Hamiltonian is the standard one, and
all the dependence of the Hamiltonian on the parameter � is
contained in the potential V��n�.

Unfortunately, the presence of the �̇2 term does not allow
for single elliptic time-dependent solitary wave solutions that
are of the form sn���x−ct��, cn���x−ct��, or dn���x−ct��
where x=n�. This is because the second derivative of the sn
and dn �or cn� functions contains both linear as well as cubic
terms, and the quantity �̇2 is a quartic polynomial in sn or dn
�or cn�. Thus the last term is equivalent to a nonpolynomial
potential when applied to a single elliptic function solution.
Therefore, in order to obtain a simple elliptic function solu-
tion in the time-dependent case, one must add a nonpolyno-
mial potential to V0 which is chosen to exactly cancel the last
term when evaluated for a single elliptic solitary wave solu-
tion of the form sn���x−ct��, cn���x−ct��, or dn���x−ct��.
This means that to obtain an equation that is derivable from
a Lagrangian or a Hamiltonian, we should add to the static
potential V0 an additional contribution V such that

�1 − ��n
2�

�V

��n
= −

��n�̇n
2

1 − ��n
2 , �4.17�

where �n is a single solitary wave described by a time-
translated elliptic function. It will turn out that V needed to
obtain a simple solution of the elliptic kind is a velocity-
dependent potential, which also depends on the type of solu-
tion �pulse- or kinklike�.

In general, we have that the Hamiltonian dynamics leads
to

�̈n = − fh
�V0 + V

��n
+ �̇n

2
1

h

�h

��n
−

f

2h

�g

��n
� . �4.18�

Since fh=1−��n
2 and h= fg, it follows that

1

h

�h

��n
−

f

2h

�g

��n
= −

��n

1 − ��n
2 , �4.19�

from where the above condition for V follows readily. For
solitary wave solutions of the sn, cn, and dn type, one wants
to choose

�V

��n
=

a1�n
5 + a2�n

3 + a3�n

�1 − ��n
2�2 , �4.20�

with ai dependent on the choice of elliptic function, in order
to cancel the effect of the �̇2 terms in the corresponding
equation of motion.

Integrating, we get for V
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V =
a1�2

2�2 +
1

2�1 − ��2�

 a1

�3 +
a2

�2 +
a3

�
�

+ 
 a1

�3 +
a2

2�2�ln�1 − ��2� . �4.21�

If we assume a soliton solution of the form

�n = Aa sn����n + c�� − vt�,m� , �4.22�

where c is an arbitrary constant, then

�̇n
2 = �2v2�Aa�2�1 − �1 + m�sn2 + m sn4� , �4.23�

which leads to

a1 = − m�
�v
Aa

�2

, �4.24�

a2 = ��2v2�1 + m� , �4.25�

a3 = − ���vAa�2. �4.26�

Explicitly, for the sn type of solitary wave �for ��0� we
need to choose the extra potential term to satisfy

−
�V

��n
=

���vAa�2�n

�1 − ��n
2�2 �1 −

�1 + m��n
2

�Aa�2 +
m�n

4

�Aa�4� .

�4.27�

If instead, we assume a pulse soliton solution �for ��0�
of the form

�n = Aa dn����n + c�� − vt�,m� , �4.28�

then we have

�̇n
2 = �2v2�Aa�2��m − 1� + �2 − m�dn2 − dn4� , �4.29�

which leads to the �different set� of coefficients �ai� for the
extra term needed to be added to the Hamiltonian

a1 = �
�v
Aa

�2

, �4.30�

a2 = − ��2v2�2 − m� , �4.31�

a3 = �1 − m����vAa�2. �4.32�

Explicitly, for the case of dn solitary waves, we choose our
additional potential term to satisfy

−
�V

��n
=

���vAa�2�n

�1 − ��n
2�2 ��m − 1� +

�2 − m��n
2

�Aa�2 −
�n

4

�Aa�4� .

�4.33�

Finally, we assume a pulse solution �for ��0� of the form

�n = Aa cn����n + c�� − vt + c�,m�; �4.34�

then we have

�̇n
2 = �2v2�Aa�2��1 − m� + �2m − 1�cn2 − m cn4� ,

�4.35�

which leads to the �different set� of coefficients �ai� for the
extra term needed to be added to the Hamiltonian

a1 = m�
�v
Aa

�2

, �4.36�

a2 = − ��2v2�2m − 1� , �4.37�

a3 = − �1 − m����vAa�2. �4.38�

Explicitly, for the case of cn solitary waves we choose our
additional potential term to satisfy

−
�V

��n
=

���vAa�2�n

�1 − ��n
2�2 ��1 − m� +

�2m − 1��n
2

�Aa�2 −
m�n

4

�Aa�4� .

�4.39�

Because of our “fine tuning” of V, in all cases, the soli-
tary waves effectively obey the second-order differential dif-
ference equation,

− �̈n +
1 − ��n

2

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2� = 0.

�4.40�

As long as � is proportional to �2, we expect that this equa-
tion has the correct continuum limit. Next, we demonstrate
this for the three cases explicitly.

A. Positive � and kink solutions

If we assume a solution of the form

�n = Aa sn����n + c�� − vt�,m� , �4.41�

where c is an arbitrary constant, we obtain the equations

sn2���� = �
�Aa�2

m
,

�a2 =
2

�2 �1 − dn����cn����� − �1 + m��2v2,

�A2a2 = 2m
sn2����

�2 − 2m�2v2, �4.42�

with the continuum limit ��→0� given by Eq. �2.4�. From
this we deduce that

A2 =
m�sn2���� − �2v2�2�

�1 − dn����cn����� − �1 + m��2�2v2/2
�4.43�

and

�

�
=

sn2����
2�sn2����/�2 − �2v2�

. �4.44�

For small lattice spacing � we get the result
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� =
��2

2�1 − v2�
. �4.45�

From Eq. �4.6� with the choice g=1, all the � dependence of
the Hamiltonian is in V��n�, so the above result implies a
velocity-dependent potential.

Localized mode. Let us now consider the m→1 limit in
which case we get a localized kink solution

�n = Aa tanh���n + c�� − vt� , �4.46�

where

A = 1, �a2 = tanh2���� ,

�a2 =
2

�2 tanh2���� − 2�2v2. �4.47�

B. Negative � and pulse solutions

If we assume a solution of the form

�n = Aa dn����n + c�� − vt�,m� , �4.48�

where c is an arbitrary constant, we obtain the system of
equations

sn2����
cn2����

= − ��Aa�2,

− �a2 =
2

�2� dn����
cn2����

− 1� − �2 − m��2v2,

− �A2a2 =
2

�2

sn2����
cn2����

− 2�2v2, �4.49�

with the continuum limit ��→0� given by Eq. �2.7�. From
this we deduce that

A2 =
sn2���� − �2v2�2cn2����

�dn���� − cn2����� − �2 − m��2�2v2cn2����/2
�4.50�

and

�

�
=

�2sn2����
2�sn2���� − �2�2v2cn2�����

. �4.51�

For small � we again have the relation �4.45�. When v→0,
we obtain �=��2 /2. This exactly cancels the ��n

3 term in the
equation of motion and we get the simple discretization for
the time-independent case. In the time-dependent case, we
again have the result that the potential needed is a function of
the velocity of the solitary wave.

If instead we assume a solution of the form

�n = Aa cn����n + c�� − vt�,m� , �4.52�

where c is an arbitrary constant, we obtain the equations

m
sn2����
dn2����

= − ��Aa�2,

− �a2 =
2

�2� cn����
dn2����

− 1� − �2m − 1��2v2,

− �A2a2 =
2m

�2

sn2����
dn2����

− 2m�2v2, �4.53�

with the continuum limit ��→0� of Eq. �2.9�. From this we
deduce that

A2 =
m�sn2���� − �2v2�2dn2�����

�cn���� − dn2����� − �2m − 1��2�2v2dn2����/2
�4.54�

and

�

�
=

�2sn2����
2�sn2���� − �2�2v2dn2�����

. �4.55�

For small lattice spacing, �, the parameters � and � are re-
lated by Eq. �4.45�.

Localized mode. In the limit of m→1, both cn and dn
solutions reduce to the localized pulse solution

�n = Aa sech����n + c�� − vt�� , �4.56�

where

− �a2A2 = sinh2���� ,

− �a2 =
2

�2 �cosh���� − 1� − �2v2,

− �a2A2 =
2

�2 sinh2���� − 2�2v2. �4.57�

V. SCATTERING OF SOLITARY WAVES

When we have two solitary waves colliding with opposite
velocity, then the equation of motion depends on whether we
are considering sn, dn, or cn type solitary waves. In general,
we have

�̈n =
1 − ��n

2

�2 ��n+1 + �n−1 − 2�n� + ��n�a2 − �n
2�

−
�

1 − ��n
2 �̇n

2�n − �1 − ��n
2�

�V

��n
, �5.1�

where the partial derivatives of V are given by Eqs. �4.27�,
�4.33�, and �4.39� for the three types of solutions, respec-
tively. The V term given by Eq. �4.21� adds an extra term to
the energy-conservation equation. The conserved energy is
given by

E = �
n
� �̇n

2

2�1 − ��n
2�

+
��n+1 − �n�2

2�2 −
�

2�
�n

2

+ ��a2� − 1�
ln�1 − ��n

2�
2�2 � + V . �5.2�

Typical scenarios are depicted in Figs. 5 and 6 for the
scattering case of two kink-antikink waves and two pulse-
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antipulse waves, respectively. The solution of the kink-
antikink “scattering” waves appears to correspond to a spa-
tially localized, persistent time-periodic oscillatory bound
state �or a breather �31,32�� with some radiation �phonons� at
late times. Breathers are intrinsically dynamic nonlinear ex-
citations and can be viewed as a bound state of phonons. The
scattering of pulse-antipulse is different: there is a flip after
collision and relatively less radiation. Here, our characteriza-
tion of the dynamics for the two types of solutions is solely
based on the visual analysis of the time evolution �33�.

VI. ENERGY OF SOLITARY WAVES AND THE
PEIERLS-NABARRO BARRIER

In a discrete lattice, there is an energy cost associated with
moving a localized mode by a half lattice constant, known as
Peierls-Nabarro �PN� barrier �18,19�. In the m→1 limit, the
elliptic functions become localized and become either pulses
or kinklike solitary waves. We shall now show that, rather
remarkably, the PN barrier vanishes in this model for both
types of localized modes. In fact, we prove an even stronger
result, that the PN barrier is zero for all three periodic solu-
tions �in terms of sn, cn, and dn�.

We start from the conserved energy expression given by
Eq. �5.2� with V of Eq. �4.21�. First of all, we shall show
that in the time-dependent as well as in the static cases, the
conserved energy is given by

E = �
n
�−

�n+1�n

�2 + B ln�1 − ��n
2� + A� , �6.1�

where the constants A and B vary for each case.
We first note that in view of Eqs. �4.17� and �4.20�, we

have

�̇n
2

2�1 − ��n
2�

= −
1

2��1 − ��n
2�

�a1�n
4 + a2�n

2 + a3� . �6.2�

Combining this term with V of Eq. �4.21� in the energy
expression �5.2�, we then find that the conserved energy is
given by

FIG. 5. �Color online� Scattering of single sn kink-antikink
waves �m=1�. For completeness, at t=0, we also depict the time
derivative of the initial wave function.

FIG. 6. �Color online� Scattering of single dn pulse-antipulse
waves �m=1�. For completeness, at t=0, we also depict the time
derivative of the initial wave function.
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E = �
n
�
 1

�2 −
�

2�
+

a1

�2��n
2 −

�n+1�n

�2 +
1

2�2
a2 +
a1

�
�

+ 
�a2

2�
−

�

2�2 +
a1

�3 +
a2

2�2�ln�1 − ��n
2�� . �6.3�

Quite remarkably we find that in the case of all the �i.e.,
sn, cn, as well as dn� solutions,

1

�2 −
�

2�
+

a1

�2 = 0, �6.4�

where use has been made of relevant equations in Sec. IV. As
a result, the �n

2 term vanishes. Thus the conserved energy
takes a rather simple form as given by Eq. �6.1� in the case of
all of our solutions, and the constants A and B are given by

A =
1

2�2
a2 +
a1

�
� , �6.5�

B =
�a2

2�
−

�

2�2 +
a1

�3 +
a2

2�2 . �6.6�

Here a1 ,a2 ,a3 have different values for the three cases and
are as given in Sec. IV. In the special case of the static
solutions, there is a further simplification in that the constant
term also vanishes, since a1,2,3 are all zero in that case.

Let us now calculate the PN barrier in the case of the
three periodic solutions obtained in Sec. IV and show that it
vanishes in all three cases. Before we give the details, let us
explain the key argument. If we look at the conserved energy
expression as given by Eq. �6.1�, we find that there are two
c-dependent sums involved here. We also observe that in
these expressions, time t and the constant c always come
together in the combination

k1 = ��c� − vt� . �6.7�

Further, using the recently discovered identities for Jacobi
elliptic functions, we explicitly show that for all the solutions
the first sum is c-independent. Since the total energy E as
given by Eq. �6.1� is conserved, its value must be indepen-
dent of time t, and since time t and the constant c always
come together in the combination k1 as given by Eq. �6.7�, it
then follows that the second sum must also be c-independent
and thus there is no PN barrier for any of our periodic, and
hence also the localized pulse or kink, solutions.

In particular, the following three cyclic identities �24� will
allow us to explicitly perform the first sum in Eq. �6.1�:

m sn�x�sn�x + a� = − ns�a��Z�x + a� − Z�x� − Z�a�� ,

�6.8�

m cn�x�cn�x + a� = m cn�a� + ds�a��Z�x + a� − Z�x� − Z�a�� ,

�6.9�

and

dn�x�dn�x + a� = dn�a� + cs�a��Z�x + a� − Z�x� − Z�a�� .

�6.10�

Here Z�x��Z�x ,m� is the Jacobi zeta function �25,26�. In
addition, we use the fact that

�
n=1

N

�Z����n + 1� + k1,m� − Z�n�� + k1,m�� = 0.

�6.11�

Let us now consider the sum as given by the first term of
Eq. �6.1� for the three cases. We first consider the kinklike
solution, which can also be written as

�n = Aa sn�n�� + k1,m� . �6.12�

Using the identities given above, we obtain

�
n=1

N �−
��n+1�n�

�2 � = −
�Aa�2ns����

m�2 N Z���� . �6.13�

For the dn pulselike case, we have instead

�n = Aa dn�n�� + k1,m� , �6.14�

and the first sum in Eq. �6.1� becomes

�
n=1

N �−
�n+1�n

�2 � = −
N�Aa�2

�2 �dn���� − cs����Z����� .

�6.15�

Finally, for the cn pulselike case, we have

�n = Aa cn�n�� + k1,m� . �6.16�

In this case, the first sum in Eq. �6.1� becomes

− �
n=1

N
�n+1�n

�2 = −
N�Aa�2

�2 � 1

m
Z����ds���� − cn����� .

�6.17�

It is worth noting that all these sums are independent of the
constant k1 and hence c. As argued above, since the total
energy E given by Eq. �6.1� is conserved �and hence time-
independent� and since t and c always appear together in the
combination k1 in Eq. �6.1�, it follows that the second sum in
Eq. �6.1� must also be independent of k1 and hence c. We
thus have shown that the PN barrier is zero for the three
periodic solutions and hence also for the localized solutions
�which are obtained from them in the limit m=1�.

In fact, it is easy to show that for all the three cases, the
second sum �apart from a trivial k1-independent constant� in
Eq. �6.1� is given by

�
n=1

N

ln�1 +
sn2����
cn2����

dn2�n�� + k1�� . �6.18�

EXACT SOLITARY WAVE SOLUTIONS… PHYSICAL REVIEW E 72, 036605 �2005�

036605-9



In particular, for the solution �6.12� the second sum is given
by

B�
n=1

N �ln�cn2����� + ln�1 +
sn2����
cn2����

dn2�n�� + k1��	 .

�6.19�

On the other hand, for the solution �6.14�, the second sum is
given by

B�
n=1

N

ln�1 +
sn2����
cn2����

dn2�n�� + k1�� . �6.20�

Finally, for the solution �6.16�, the second sum is given by

B�
n=1

N �ln
cn2����
dn2����

+ ln�1 +
sn2����
cn2����

dn2�n�� + k1��	 .

�6.21�

It is worth remarking at this point that by following the
above arguments, it is easily shown that even in the AL
model �3� the PN barrier is zero for the periodic dn and cn
solutions. In particular, since in that case the energy is essen-
tially given by the first sum in Eq. �6.1�, hence using Eqs.
�6.15� and �6.17� it follows that indeed for both dn and cn
solutions �2� there is no PN barrier in the AL model. Addi-
tional comments on this topic can be found in Ref. �24�.

In general, we do not know how to write the sum in Eq.
�6.18� in a closed form. However, for m=1 and N→�, the
sum of logarithms in Eq. �6.3� can be carried out explicitly,
and the energy of the solitary wave can be given in a closed
form.

We proceed as follows: One can show that, for N→�, the
following identity can be derived from the AL equation �see,
for instance, Ref. �29��:

�
n=−�

�

ln�1 + sinh2���sech2���n − x��� =
2

�
. �6.22�

Then, for kinklike solutions and m=1, we have

ln�1 − ��n
2� = ln�1 − tanh2����tanh2�n�� + k1��

= ln sech2����

+ ln�1 + sinh2����sech2 �n�� + k1�� .

Thus, in the limit when N→� and m=1, the sum of loga-
rithms in Eq. �6.3� becomes

2

��
+ �

n

ln sech2���� . �6.23�

Similarly, in the case of the two pulse solutions, dn and cn
are identical for m=1, and we can write

ln�1 − ��n
2� = ln�1 + sinh2����sech2�n�� + k1�� .

In the limit when N→�, the sum of logarithms in Eq. �6.3�
for the two pulse solutions, dn and cn, for m=1, is simply
equal to 2/ ����.

For the case of the kink solution, for m=1, B as given by
Eq. �6.6� simplifies to

B = −
sech2����

��2 , �6.24�

whereas for the case of the pulse solutions, at m=1, B sim-
plifies to

B = −
cosh����

��2 . �6.25�

VII. CONCLUSIONS

In this paper, we have shown how to modify the naive
discretization of ��4 field theory so that the discrete theory
is a Hamiltonian dynamical system containing both static
and moving solitary waves. We have found three different
periodic elliptic solutions. To obtain time-dependent solitary
wave solutions that were derivable from a Hamiltonian sys-
tem which had the correct continuum limit requires a poten-
tial V��n� that depends on the velocity of the solitary wave.
The need for a velocity-dependent potential for this problem
arises from a desire for the system to be both Hamiltonian
and allowing moving solitary wave solutions. The depen-
dence on the velocity vanishes as the lattice spacing goes to
zero.

In the static case, we have studied the stability of both
kinklike and pulselike solutions, and have found different
qualitative behavior of the lowest eigenvalue of the stability
matrix in the two cases. For typical values of the model
parameters, in the case of kinklike solutions, we found that
stability requires the number of sites, N, to be larger than a
minimum value, while for pulselike solutions stability is
achieved for arbitrary values of N. The magnitude of the
lowest eigenvalues increases with N in the kinklike case, and
decreases with N for pulselike solutions. The lattice spacing,
�, is not an independent parameter and always decreases with
N.

We also determined the energy of the solitary wave in the
three cases. Using the Hamiltonian structure, we were able to
argue that the PN barrier �18,19� for all solitary waves is
zero. As an additional result, we explicitly showed that for
the two elliptic solutions �dn and cn� �2� of the integrable
Ablowitz-Ladik model �3� the PN barrier is zero—as one
would expect.

The single solitary wave solutions were found to be stable
and when we scattered two such single-kink �m=1� solitary
waves there were two different behaviors. For pulses, the
pulse-antipulse solution leads to scattering with a flip and a
little radiation �phonons�. For kinklike solutions we found a
breatherlike behavior �32� during the collision. However, we
have not found exact two-solitary-wave or breather solu-
tions, which would help clarify the integrable nature of this
system.

The results presented here are useful for structural phase
transitions �16,28� and possibly for certain field theoretic
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contexts �17�. Our results also hold promise for appropriate
discretizations of other discrete nonlinear soliton-bearing
equations �1,2�. Possible extension to discrete integrable
models in 2+1 dimensions, e.g., Kadomtsev-Petviashvili
�KP� hierarchies �34�, would be especially desirable. Exten-
sion to time-discrete integrable models �35� is another inter-
esting possibility.
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